On constructing accurate confidence bands for ROC curves through smooth resampling

نویسنده

  • Patrice Bertail
چکیده

This paper is devoted to thoroughly investigating how to bootstrap the ROC curve, a widely used visual tool for evaluating the accuracy of test/scoring statistics s(X) in the bipartite setup. The issue of confidence bands for the ROC curve is considered and a resampling procedure based on a smooth version of the empirical distribution called the ”smoothed bootstrap” is introduced. Theoretical arguments and simulation results are presented to show that the ”smoothed bootstrap” is preferable to a ”naive” bootstrap in order to construct accurate confidence bands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Bootstrapping the ROC Curve

This paper is devoted to thoroughly investigating how to bootstrap the ROC curve, a widely used visual tool for evaluating the accuracy of test/scoring statistics in the bipartite setup. The issue of confidence bands for the ROC curve is considered and a resampling procedure based on a smooth version of the empirical distribution called the ”smoothed bootstrap” is introduced. Theoretical argume...

متن کامل

Confidence Bands for ROC Curves

We address the problem of comparing the performance of classifiers. In this paper we study techniques for generating and evaluating confidence bands on ROC curves. Historically this has been done using one-dimensional confidence intervals by freezing one variable—the false-positive rate, or threshold on the classification scoring function. We adapt two prior methods and introduce a new radial s...

متن کامل

Strong approximations for resample quantile processes and application to ROC methodology

Abstract The receiver operating characteristic (ROC) curve is defined as true positive rate versus false positive rate obtained by varying a decision threshold criterion. It has been widely used in medical science for its ability to measure the accuracy of diagnostic or prognostic tests. Mathematically speaking, ROC curve is the composition of survival function of one population with the quanti...

متن کامل

Confidence Bands for ROC Curves: Methods and an Empirical Study

In this paper we study techniques for generating and evaluating confidence bands on ROC curves. ROC curve evaluation is rapidly becoming a commonly used evaluation metric in machine learning, although evaluating ROC curves has thus far been limited to studying the area under the curve (AUC) or generation of one-dimensional confidence intervals by freezing one variable—the false-positive rate, o...

متن کامل

A Framework for Comparative Evaluation of Classifiers in the Presence of Class Imbalance

Evaluating classifier performance with ROC curves is popular in the machine learning community. To date, the only method to assess confidence of ROC curves is to construct ROC bands. In the case of severe class imbalance, ROC bands become unreliable. We propose a generic framework for classifier evaluation to identify the confident segment of an ROC curve. Confidence is measured by Tango’s 95%-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008